

Assessment Endpoint and Representative Species

- Assessment Endpoint –
 community structure, survival, growth,
 and reproduction
 - (1) "Whole" examine entire benthic community assemblage
- (2) "Specific" indicator test species:
 - > Chironomus tentans (midge);
 - > Hyalella azteca (amphipod);
 - Daphnia magna, Ceriodaphnia dubia (crustaceans);
 - Lumbriculus variegatus (worm)

Measurement Endpoints and Lines of Evidence

Exposure Assessment

Habitat/Substrate Change in Primary Study Area

Sediment tPCB Concentrations in Benthic Community Samples (log scale)

NOTE:

- large variability
- PSA elevated above references
- gradient observed

Effects Assessment - Methods

Laboratory *Hyalella* Toxicity (42-day Reproduction)

Field *Daphnia* Toxicity Survival (48-h Survival)

Toxicity Identification Evaluation (TIE)

- Wright State University. (USEPA protocols)
- Ceriodaphnia dubia
- Modified toxicity test conditions (treatments) and observed changes in toxicity
- Non-polar organics (PCBs, dioxins/furans, PAHs) identified as toxicant group
- Metals, others excluded

Benthic Community Structure

- Taxonomy and PCB chemistry
- Investigated individual metrics (e.g., total abundance, species numbers) and combined metrics (multivariate methods)
- 12 replicates (individual grab samples) collected from each of 13 stations (8 "sandy" + 5 "silty")

Benthic Community Structure – Taxonomic Richness

Coarse-Grained Sites

Fine-Grained Sites

Effects Assessment - Chemistry

Risk Characterization – Lines of Evidence (continued)

	Station ID										
Major Line of Evidence	Coarse-Grained (Sandy)					Fine-Grained (Silty)					
	1	2	3	4	5	6	7	8A	8	9	
Toxicity (11 endpoints)	-	-	-	•	•	-	•	•	•	-1	
Benthic Community (5 endpoints)	0	0	•	•	•	0	0	-	0	0	
Chemistry (7 endpoints)	•	•	•	•	•	•	•	•	•	0	
OVERALL	•	•	•	•	•	•	•	•	•	0	

 \bullet = major impact \bullet = moderate impact \circ = negligible impact

Risk Characterization

		Coarse-Grained Sediments							
Measurement Endpoints	Weighting	Evidence of Harm	Magnitude						
C. Chemical Measures									
C-1. Water chemisty	Low/ Mod	Yes	Intermediate						
C-2. Sediment chemistry	Low/ Mod	Yes	High						
C-3. Tissue chemistry	Moderate	Yes	Intermediate						
T. Toxicological Measures									
T-1. Sediment toxicity (laboratory)	Mod/ High	Yes	High						
T-2. Sediment toxicity (field)	Mod/ High	Yes	Intermediate						
T-3. Indications of PCB as toxicity driver in TIE	Moderate	Yes	High						
B. Benthic Community Measures									
B-1. Abundance, richness, and biomass of invertebrates, relative to reference	Moderate	Yes	Intermediate						
B-2. Benthic community structure, using multivariate assessment	Moderate	Yes	Intermediate						
B-3. Modified Hilsenhoff Biotic Index (MHBI) indicator of organic pollution	Moderate	No	_						

Summary of Risks (By Reach)

Extrapolation of Risks

- No extrapolation to other species necessary
- Risks reduced downstream of Woods Pond
- Risks negligible below Great Barrington (PCB < 3 ppm)